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1. INTRODUCTION

We present a new combinatorial model called minmax
multidimensional knapsack problem (MKP). The MKP is
motivated by a military logistics optimization problem typ-
ical to tactical-level ground operations such as supply and
resupply of ammunition to an artillery battalion in a 2-day
operation. The problem is a two-period stochastic program-
ming problem with recourse. However, under our reasonable
operational assumptions, it is shown to have unique features
that reduce it into two separate and sequential (albeit not inde-
pendent) sets of MKPs. We show that the MKP is NP-hard and
develop a new practically efficient algorithm for solving it.

Stated simply, the military logistics problem is to find min-
imum cost inventories that satisfy minimum responsiveness
requirements. The requirements are expressed in terms of
probabilities for satisfying demands in a two-period operation
of a military unit that comprises several weapons. While some
inventories must be determined before the operation, others
can be set after the demands in the first period are realized—a
situation that lends itself to a two-period, chance-constrained,
stochastic programming model with recourse.

Stochastic programming models with recourse have been
applied in supply-chain and related problems, mostly in the
context of optimizing expected values. Escudero et al. [9]
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utilize scenario modeling for production and capacity
planning. Their multiperiod model minimizes expected costs,
while considering several recourse alternatives. Dempster
et al. [7] consider a multiperiod supply-chain scheduling
problem where demands and costs are uncertain. In a recent
paper, Cattani et al. [4] analyze the simultaneous produc-
tion of two products: a market-specific product tailored to the
needs of individual regions, and a global product that could be
sold in many regions. They consider a two-stage model with
additional, post-recourse, uncertainty in the second stage, and
seek to maximize an expected profit function. Cheung and
Powell [6] consider the class of multistage dynamic networks
with random arc capacities, and propose a successive convex
approximation approach for the expected recourse function,
which captures the future effects of current decisions under
uncertainty. This method decomposes the network in each
stage into sub-problems for which expected recourse func-
tions are easy to obtain [5]. Recently, Gupta et al. [11] used
chance constraints programming approach coupled with two-
stage stochastic programming with recourse methodology to
construct a two-stage supply chain plan under demand uncer-
tainty with continuous random variables. The authors utilized
linear programming duality to obtain the expectation of the
recourse function associated with the second supply chain
stage in terms of the first stage production decisions.

One-period chance-constrained (OPCC) problems of the
form min{cx : P [T x ≥ q] ≥ p, Ax ≥ b, x ≥ 0} are

© 2007 Wiley Periodicals, Inc.
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well studied for continuous random variables q. However,
there are only a few papers investigating the discrete random
variables case, e.g. [3, 8, 16]. In [16] the author considers an
integer version of the OPCC problem (IP-OPCC) with more
general objective functions, and uses methods of disjunctive
programming to approximate the convex hull of the feasi-
ble region. For some special cases a full description of the
convex hull is given. In [8] the concept of p-efficient points
(PEP) is introduced and used for deriving lower and upper
bounds for the OPCC problem with discrete probability dis-
tributions. Let F denote the joint distribution function of q,
then for 0 ≤ p ≤ 1, the PEP are defined as the minimal
realization q points (in the sense of the order ≤) for which
F(q) ≥ p. In [2] a branch and bound algorithm that utilizes
PEP is presented. In [15] a generalization of the IP-OPCC is
analyzed where new valid inequalities related to the prece-
dence constrained knapsack polyhedra are developed and are
used by a general iterative algorithm to solve the general-
ized problem. In these methods an optimal solution can be
obtained by exploring the set of PEP. However, since the set of
PEP can be extremely large, the optimization procedure may
encounter computational difficulties. Nevertheless, “good”
solutions can be derived by looking at a subset of PEP.

In this paper we use a different IP formulation to model
the OPCC problem with discrete probability distributions,
and observe that the resulting IP problem is a special case of
a combinatorial problem termed minmax multidimensional
knapsack problem (MKP). Given a set A = {as : s ∈ S}
of n-dimensional vectors as of real numbers, each associ-
ated with a weight ps , the MKP consists of selecting a subset
A′ ⊆ A such that

∑
as∈A′ ps , the weight of A′, exceeds a

certain threshold, and the objective is to minimize the sum of
the componentwise maxima of the vectors in A′.

The one-dimensional MKP is related to the min knapsack
problem [1], where one looks for a subset of items such that
the sum of their weights exceeds a given constant, and the sum
of their values is minimized. While both problems have the
same cover type constraint, they differ in the objective func-
tion; in the MKP we look for a minmax solution while in
the min knapsack problem we seek a minimum sum solu-
tion. The different objective functions affect the complexity
of the problems; while the min knapsack problem is known to
be NP-hard (see for example [1]) the one-dimensional MKP
can be solved by a simple greedy polynomial time algorithm.
Another remotely related problem is the NP-hard multidi-
mensional knapsack problem which also consists of selecting
A′, a subset of a given set of items, such that the total value
of A′ is maximized while a set of knapsack constraints are
to be satisfied (e.g. [14] and [3]). We note that the multidi-
mensional knapsack problem differs from the MKP in both
the constraints and the objective function. The constraint in
the MKP is of a covering type while the constraints of the
multidimensional knapsack problem are of a packing type.

Also the objective function of the multidimensional knap-
sack problem is to maximize a total value while in the MKP
it is a minmax objective function. To the best of our knowl-
edge this is the first time the MKP is defined and solved.
We believe that the MKP and its algorithm are interesting by
themselves and moreover, are useful for solving a class of
chance-constrained problems.

The rest of the paper is organized as follows. In Section 2
we motivate the modeling effort and introduce some nota-
tion. In Section 3 we introduce the single-period chance-
constrained optimization problem, and in Section 4 we
describe the MKP and develop an algorithm for solving it.
We show that the single-period chance-constrained prob-
lem is an MKP. In Section 5 we formulate the two-period
chance-constrained optimization problem and show that this
formulation is equivalent to an IP model, which is decom-
posed into a series of MKPs. Summary and conclusions are
given in Section 6. The Appendix contains proofs for the
decomposition property.

2. MOTIVATION AND NOTATION

Our model is motivated by a military logistics problem
typical to ground operations. Consider a battalion that com-
prises several weapons (e.g., artillery pieces). Each weapon
consumes ammunition from a designated attached stockpile.
There is also a considerable amount of ammunition on-board
the weapon itself [13]; however this inventory is an emer-
gency safety stock, to be used only if the stockpile is empty.
The total amount of ammunition in the stockpile and on board
the weapon is assumed to be enough to satisfy any foresee-
able demand but the objective is to tap the on-board inventory
as little as possible and to rely only on the stockpile [10].
An additional ammunition depot is attached to the battalion
headquarters at the rear of the combat zone.

We consider a 2-day operation. During the first day a
weapon can use ammunition only from its attached stock-
pile or, if needed, from its own safety stock. It cannot rely
on logistical support from other sources because movement
in the combat zone during the combat operation is risky. At
the end of the first day, after demands have been observed,
depleted stockpiles and possibly reduced safety stocks are
replenished from the depot or from other weapons’ stock-
piles that transship surplus ammunition. The replenishment
process is completed before the second day of operation.
The replenished amount of each weapon must cover pos-
sible expenditure from the weapon’s safety stock during the
first day and the (yet unknown) demand in the second day.
Similar inventory control situations may occur in the retail
industry too.

The weapons are called henceforth demand points (DP).
We require that the supplies allocated to the DPs on each one
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of the two days satisfy the demand during that day with a
given minimum probability. Because of the inherent scarcity
of relevant demand data regarding military operations [12],
demand distributions are generated based on expert inputs
in the form of combat scenarios. In the one-period prob-
lem, let D = (D1, D2, . . . , Dn) denote the vector of random
variables that represents the demands at DPi , i = 1, . . . , n,
and let d = (d1, . . . , dn) denote a realization of this vector,
which is called a demand scenario. We assume a finite num-
ber of demand scenarios where S denotes their index set. Let
Pr[D = ds] = ps > 0, s ∈ S, where

∑
s∈S ps = 1. In

the two-period problem we have two vectors of random vari-
ables, and accordingly, two index sets of demand scenarios,
S1 and S2.

Let xi denote the amount of supply initially allocated to
DPi , and let Y denote the amount of supply initially deployed
in the depot. The parameters Cxi

and CY are the cost of a unit
of supply at DPi and the depot, respectively. These costs are
incurred at the first period. There are no additional costs in the
problem. Military DPs are similar units (e.g., artillery guns)
and therefore it is reasonable to assume that Cxi

= CX for all
i = 1, . . . , n.

The decisions made at the beginning of day 1 are with
respect to (a) the amount of supply xi (stockpile) to be allo-
cated to each DP, and (b) the total amount of supply Y to
be kept in the depot at the beginning of period 1, to be used,
if necessary, at the second period. The recourse variables
are the shipments that take place at the beginning of day
2 from and to the depot. For a given pair of distributions of
interrelated discrete demand random variables—one for each
day—the objective is to find a minimum cost inventory policy
such that demands are satisfied in both days with probabili-
ties that exceed certain thresholds. From now on we use the
terms “day” and “period” interchangeably. We begin with the
single-period problem.

3. THE SINGLE PERIOD PROBLEM

The problem is to minimize the total amount of supply such
that a certain level of logistics responsiveness is attained. The
logistic responsiveness is measured by the probability that all
demands are satisfied, that is, none of the weapons has to use
ammunition from its safety stock. Formally,

min
n∑

i=1

xi (1)

s.t .

Pr[D ≤ x] ≥ Q, (2)

x ≥ 0, x ∈ Z
n. (3)

where x = (x1, . . . , xn).

Constraint (2) is the logistics responsiveness chance
constraint and Q is the probability threshold set by the com-
mander. Since we assume that the demand scenarios are dis-
crete random variables, problems (1)–(3) may be formulated
as the following IP problem:

min
n∑

i=1

xi (4)

s.t .

xi − ds
i δs ≥ 0, i = 1, . . . , n, s ∈ S, (5)∑

s∈S

psδs ≥ Q, (6)

xi ≥ 0, xi ∈ Z, δs ∈ {0, 1}, i = 1, . . . , n, s ∈ S. (7)

The binary variables δs , s ∈ S, indicate whether a cer-
tain scenario has been selected to be satisfied. Constraint (6)
guarantees that the probability of unsatisfied demand does
not exceed the operationally set threshold 1 − Q.

Problems (4)–(7) is an MKP, a newly defined combinato-
rial problem which is formulated next.

4. THE MKP

Let as = (as
1, . . . , as

n) be an n-dimensional real vector, and
let A = {as : s ∈ S} be a set of |S| such vectors. Each vector
as in A has weight (value) ps > 0. Let A′ ⊆ A be a subset
of A. Define

G(A′) =
n∑

i=1

max
as∈A′ a

s
i ,

where maxas∈A′ as
i is the largest ith component among the

vectors in A′.
A subset A′ ⊆ A is said to be Q-feasible for a given

parameter Q if
∑

as∈A′ ps ≥ Q. The minmax multidimen-
sional knapsack problem (MKP) is to find a Q-feasible subset
A∗ ⊆ A such that G(A∗) is minimal. The subset A∗ is called
an optimal minmax subset.

EXAMPLE 1: LetA = {(1, 5), (5, 3), (3, 7), (10, 1), (7, 7)},
Q = 0.8 and ps = 0.2 for all s. Then any subset of A

containing at least 4 elements is feasible, and an optimal min-
max subset of A is A∗ = {(1, 5), (5, 3), (3, 7), (7, 7)}, with
G(A∗) = 7 + 7 = 14.

It is easily seen that problem (4)–(7) is actually an MKP,
where as is a demand scenario ds , s ∈ S, and the objective
is to find a Q-feasible subset of these scenarios such that
the sum of the componentwise maxima of the corresponding
demand vectors is minimized.

Naval Research Logistics DOI 10.1002/nav
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Next we develop a simple combinatorial algorithm,
termed the MKP-Algorithm, for solving the MKP. The case
n = 1 is trivial. A greedy algorithm solves the problem
by simply arranging the elements in A in a nondecreas-
ing order s(1), . . . , s(|S|). The optimal subset is A∗ =
{as(1), as(2), . . . , as(j∗)}, where j ∗ is the smallest index such
that

∑j∗
j=1 ps(j) ≥ Q.

The case n > 1 is more complex. The algorithm com-
prises two stages: a preliminary stage and a main stage. In
the preliminary stage we discard from A all vectors that are
evidently nonoptimal. In the main stage the remaining sub-
set is “pruned” and an optimal minmax subset is obtained.
That is, the algorithm finds and then deletes, a complement
of a Q-feasible subset, to obtain a required optimal minmax
subset.

4.1. Preliminary Stage

Let as
sum = ∑n

i=1 as
i , s ∈ S, and, without loss of generality,

assume that a1
sum ≤ a2

sum ≤ · · · ≤ a
|S|
sum. Let j ∗ be the smallest

index such that
∑j∗

j=1 ps ≥ Q. Define the set B as follows:

B =
{

as ∈ A : as
sum ≤

n∑
i=1

max
{
a1

i , . . . , aj∗
i

}

= G({a1, . . . , aj∗ })
}

.

Note that {a1, . . . , aj∗ } is a subset of B. For an empty set we
let j ∗ = 0.

PROPOSITION 4.1: If as ∈ A \ B for some s ∈ S then
as �∈ A∗, where A∗ is any optimal minmax subset.

PROOF: Suppose as ′ ∈ A \ B and as ′ ∈ A∗ for some
optimal minmax subset A∗. Then,

G(A∗) =
n∑

i=1

max
as∈A∗ as

i ≥ as ′
sum.

Since as ′ ∈ A \ B, it follows that

as ′
sum >

n∑
i=1

max
{
a1

i , . . . , aj∗
i

} = G({a1, . . . , aj∗ }),

where {a1, . . . , aj∗ } is a feasible subset. Thus, A∗ cannot be
an optimal minimax subset, in contradiction. �

We conclude that an optimal minmax subset of A must be
a subset of B.

4.2. Main Stage

We search for an optimal minmax subset by considering
its possible complement subsets in B. In order to reduce the
number of subsets examined, we generate �, a family of
subsets, in which a complement of an optimal minmax sub-
set is guaranteed to be included. We describe the construction
of � more precisely below.

For each i, i = 1, . . . , n, we arrange the vectors of B in a
nonincreasing sequence Bi according to their ith component.
That is,

asi (1) � asi (2) � · · · � asi (|B|) if and only if a
si (1)
i

≥ a
si (2)
i ≥ · · · ≥ a

si (|B|)
i ,

and Bi is the sequence (asi (1), asi (2), . . . , asi (|B|)).
Then, we define � to be the family of all possible sub-

sets ψk , k = 1, . . . , |�|, of B that satisfy the following two
conditions:

(1) ψk is of the form

ψk =
⋃

i∈{1,...,n}

{
asi (1), . . . , asi (mi)

}
,

where 0 ≤ mi ≤ |B|. Thus, each ψk is a pre-
fix, that is, a union of truncated sequences from Bi ,
i = 1, . . . , n. Note that mi = 0 means that no prefix
is taken from the ith order.

(2) ψk is a maximal cardinality set that satisfies

p(A \ B) +
∑

as∈ψk

ps ≤ 1 − Q,

where p(A\B) = ∑
as∈(A\B) ps . That is, the comple-

ment in A of the union of the set of deleted vectors
(which are evidently nonoptimal) and ψk , is a Q-
feasible subset of A. Adding one more vector from
B to ψk will violate the inequality and therefore will
render the complement infeasible.

Now, for each ψk ∈ � define

M(ψk) =
n∑

i=1

max
as∈(B\ψk)

as
i = G(B \ ψk)

and let

k̂ ∈ arg min{M(ψk) : ψk ∈ �}.
The set B \ ψk̂ is an optimal minmax subset of A. Before
we prove the validity of the MKP-Algorithm, consider
Example 2.

Naval Research Logistics DOI 10.1002/nav
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Table 1. Scenarios.

s as
1 as

2

1 3 5
2 6 1
3 8 9
4 6 5
5 3 5
6 4 9
7 2 7
8 7 2
9 10 10

10 4 3

EXAMPLE 2: Let S = {1, . . . , 10}, n = 2, Q = 0.6, and
ps = 0.1 for all s ∈ S (see Table 1).

First, we rank the vectors in a nondecreasing order of the
sum of their components (see Table 2).

j ∗ = 6; s(1) = 2, s(2) = 10, s(3) = 1,

s(4) = 5, s(5) = 7, s(6) = 8;

max
{
a2

1 , a10
1 , a1

1 , a5
1 , a7

1 , a8
1

}
+ max

{
a2

2 , a10
2 , a1

2 , a5
2 , a7

2 , a8
2

} = 7 + 7 = 14.

Proposition 4.1 shows that a3 and a9 can be deleted from
further consideration since the sums of their components are
17 and 20, respectively, which are greater than 14. Thus,
B = {a1, a2, a4, a5, a6, a7, a8, a10}.

Next we generate two rankings of B, according to each
component of as . Each ranking is in a nonincreasing order of
the corresponding component (see Table 3).

Now, � = {{(7, 2), (6, 1)}, {(7, 2), (4, 9)}, {(4, 9), (2, 7)}},
and M({(7, 2), (6, 1)}) = 6 + 9 = 15, M({(7, 2), (4, 9)}) =
6 + 7 = 13 and M({(4, 9), (2, 7)}) = 7 + 5 = 12.

We conclude that the optimal minmax subset A∗ comprises
the vectors with the indices 1, 2, 4, 5, 8, 10, and G(A∗) = 12.
Note that the optimal minmax subset in this example is
unique. This is not necessarily true in general.

Recall from Proposition 4.1 that any optimal minmax sub-
set of A is contained in B. The next proposition shows the
existence of an optimal subset such that its complement in B

lies in �.

PROPOSITION 4.2: There exists an optimal minmax
subset A∗ ⊆ B such that B \ A∗ ∈ �.

PROOF: Let W ⊆ B be the complement of an optimal
minmax subset in B, and suppose that W �∈ �. Define,

E(W) = {
as ∈ W : ∀ i there exists

asi ∈ (B \ W) and a
si

i ≥ as
i

}
.

That is, if as ∈ E(W), then for each Bi , at least one of the
components of the truncated sequence (asi (1), asi (2), . . . , as)

is not contained in W . Let W be the set of all such W and let
Ŵ be such that

|E(Ŵ)| = min{|E(W)| : W ∈ W}.
If |E(Ŵ)| = 0 we are done. Otherwise, there is a vector
aŝ ∈ E(Ŵ). According to the definition of E(W), for each
i = 1, . . . , n there exists asi ∈ B \ Ŵ such that a

si

i ≥ aŝ
i . But

then,

n∑
i=1

max
{
as

i : as ∈ B \ Ŵ
}

=
n∑

i=1

max
({

as
i : as ∈ B \ Ŵ

} ∪ {
aŝ

i

})
,

which implies that E(Ŵ) is not minimal, in contradiction.
Therefore, there exists an optimal minmax subset whose
complement belongs to �. �

Thus, the algorithm shown above solves the MKP. Recall
that as defined in [8], for any distribution function F of q, and
any 0 ≤ p ≤ 1, the p-efficient points (PEP), are defined as
the minimal realization q points (in the sense of the order ≤)
for which F(q) ≥ p. Notice that any PEP is p-feasible but not
vice versa. The MKP can be solved by the more general and
powerful methods which are based on polyhedral techniques
as described previously in the Introduction and presented in
[2, 8, 15, 16]. However, our MKP-Algorithm, which exam-
ines points in B—possibly some non-PEP—is conceptually
simpler and easier to use than those methods.

4.3. Complexity and Computational Analysis

THEOREM 4.3: MKP is NP-complete and the complexity
of the MKP-Algorithm is O(nk), where

k = min

{⌈
1 − Q

mins ps

⌉
, |S|

}
.

Table 2. Rank order of the sums.

s as
1 as

2 as
sum

2 6 1 7
10 4 3 7

1 3 5 8
5 3 5 8
7 2 7 9
8 7 2 9
4 6 5 11
6 4 9 13
3 8 9 17
9 10 10 20

Naval Research Logistics DOI 10.1002/nav
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PROOF: We prove the NP-completeness by showing a
simple reduction to the knapsack problem. Recall that the
knapsack problem is defined as follows. Given non-negative
numbers ci , wi , i = 1, . . . , n, and b, find a subset T ⊆
{1, . . . , n} such that

∑
i∈T wi ≤ b and

∑
i∈T ci is maximized.

We show that the knapsack problem polynomially transforms
to MKP using the following reduction. Let |S| = n and let A

be the set of n vectors of dimension n, where the ith vector is
set to be ci × ei with ei the ith unit vector. Let pi = wi and
Q = ∑n

i=1 wi −b. Then, if A∗ ⊆ A is an optimal Q-feasible
subset then A \ A∗ is an optimal solution for the knapsack
problem, and vice versa. We turn now to show the complexity
of the MKP-Algorithm.

Summing up the n components for each one of the vec-
tors in A takes O(n|S|) computations, arranging the sums
in a nonincreasing sequences takes O(|S| log |S|) steps and
constructing the set B takes O(|S|) steps. Thus, the prelim-
inary stage of the algorithm takes O(n|S|) + O(|S| log |S|)
steps. The main stage of the algorithm requires arranging n

sequences, an operation that requires O(n|S| log |S|) com-
putations. Let k be an upper bound on the size of the largest
set in �. Observe that k is the minimum between the num-
ber |S| of possible vectors in A, and the maximal number of
vectors that can “squeeze” in any ψk . This maximal number
is determined by the smallest value among {ps : s ∈ S} and
the threshold Q, and is given by � 1−Q

mins ps
�. Finally, examining

all possible subsets in � takes O(nk). This can be done by
considering vectors of length of at most k, in which the j th
component is a number 1 ≤ i ≤ n indicating according to
which prefix the vector (scenario) was chosen to be included
in �k . Also, after each step, the set of possible vectors (scenar-
ios) in ψk is updated by removing the already chosen vectors
(scenarios). Thus, since O(nk) ≥ O(n|S| log |S|), the com-
plexity of the MKP-Algorithm is O(n|S|)+O(|S| log |S|)+
O(n|S| log |S|) + O(nk) = O(nk). �

Note that examining all possible subsets of � can also be
done by checking all prefixes of length 0 − k for each i. This
takes a time of at most O(kn). However, since in practical
military (and many commercial) logistics problems k is a rela-
tively small integer, we have chosen to present the complexity

Table 3. Rank order according to the first component.

s as
1 as

2

8 7 2
2 6 1
4 6 5
6 4 9

10 4 3
1 3 5
5 3 5
7 2 7

Table 4. Average running times (in seconds) of the MKP-
Algorithm and the IP code.

MKP IP

|S| Average S.D. Average S.D.

40 0.07 0.06 0.62 0.12
60 1.44 2.66 3.88 2.09

100 71.41 76.79 375.67 392.10

in terms of O(nk) rather than O(kn). The probability thresh-
old Q is usually larger than 0.9, and relevant scenarios have
typically probability that is at least 0.01. Therefore, in such
situations k ≤ 10, which implies the high efficiency of our
algorithm for any practical purposes. Note, as well, that for a
fixed k or a fixed n, our MKP-Algorithm runs in polynomial
time.

Next, the MKP-Algorithm is compared to a general IP
code (CPLEX 8.0) with respect to running time. The com-
parison has been executed on Intel Pentium 4, 2Ghz CPU,
512Mb RAM, run under Windows XP. The MKP-Algorithm
has been implemented in Microsoft Visual C++ 6.0.

We fix the number of DPs at n = 15, which is approxi-
mately the number of battalions in a division, the number of
batteries in an artillery regiment, and the number of artillery
pieces in a battalion. The number of scenarios ranges between
|S| = 40 and |S| = 100. The scenarios are uniformly
distributed (all scenarios are equally probable) and the prob-
ability threshold is 0.9. For each value of |S|, 100 randomly
generated problems were solved by the MKP-Algorithm
and the general IP code. Table 4 presents the average run-
ning times (in seconds) and the corresponding standard
deviations.

For this range of data the MKP-Algorithm clearly outper-
forms the general IP code. This result is reversed if n gets
larger. For |S| = n = 50, the general IP code is 10 times
faster than the MKP-Algorithm. However, in practical mili-
tary logistics problems, in which n is relatively small (e.g. an
artillery battalion comprises 16 pieces), the MKP-Algorithm
is more efficient.

5. THE TWO-PERIOD MODEL

Recall that xi is the amount of supply initially allocated to
DPi , i = 1, . . . , n, and Y is the amount of supply deployed
initially in the depot. These are the first-stage decision vari-
ables. The second stage (recourse) variables are shipments
between the depot and the DPs that take place after the first
day demands are realized. Suppose that scenario s ∈ S1 has
been realized in the first day. For that particular scenario s, and
the set of demand scenarios for day 2, with their correspond-
ing probabilities, let ys

i , i = 1, . . . , n, denote a feasible flow
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of supply between the depot and DPi such that the demand
in day 2 is satisfied with probability not smaller than a given
threshold. If ys

i ≥ 0, then the depot sends out supply to DPi ,
and if ys

i ≤ 0, the depot receives surplus supply back from
DPi . The sum ys = ∑n

i=1 ys
i denotes the total net flow of

supply between the depot and the DPs at the end of the first
day, given scenario s has been realized. This amount is to
be shipped out before the beginning of day 2, to satisfy the
demand in the second day. If ys < 0, then there is a back
flow of supply from the DPs to the depot at the end of the
first day, which means that the supplies left in the DPs after
the first day are more than enough for satisfying the demand
in day 2. Let y = maxs∈S1{ys}. If y is positive, then it is the
amount of supply that is stored in the depot at the beginning
of day 1, that is,Y = max{0, y}.

Consider the following example. Suppose n = 2 and
there are three equally likely demand scenarios for day 1:
(100, 0), (0, 150), and (30, 40) for s = 1, 2, 3, respectively.
These three demand scenarios must be satisfied with certainty
(Q1 = 1). Suppose that for day 2 there are two equally likely
scenarios: (80,0) and (0,70) that must be satisfied with cer-
tainty. Clearly, x1 = 100 and x2 = 150 is a feasible (and
minimum) solution for the first day. Suppose scenario 1 has
occurred, then y1

1 = 80 and y1
2 = −80 is a feasible flow

of supply between the depot and the two DPs at the end of
day 1. In fact, these flows are also minimal in the sense that the
depot must ship at least 80 units to DP1, and it cannot receive
more than 80 units from DP2. Here y1 = 0. If scenario 2 has
occurred then y2

1 = −20 and y2
2 = 70 with y2 = 50 are min-

imum feasible flows, which imply that the depot must have at
least 50 units in order to satisfy the required demand in day 2.
If scenario 3 has occurred, then y3

1 = 10 and y3
2 = −40

with y3 = −30. In this case (s = 3) the net flow is neg-
ative and therefore there is no need for supplies stored in
the depot. In this example, y = max{0, 50, −30} = 50 and
Y = max{0, 50} = 50.

For simplicity of exposition, as long as it does not cause
any confusion, we have chosen to indicate by the index s

the variables and the data that correspond to the first day
and by the index t those that correspond to the second day.
Accordingly, pst is the conditional probability of scenario
t ∈ S2 given that scenario s ∈ S1 has been realized in
day 1. The two-period problem is described as follows: In
period 1, before observing the demands in day 1, we deter-
mine the inventories xi , i = 1, . . . , n, in the DPs and the
inventory Y in the depot. At the end of day 1, after observ-
ing the demand scenario s that has been realized in day
1, we determine the shipments ys

i to and from the depot
to be carried out before day 2. Excess supply at a cer-
tain DP is shipped back to the depot, and shortage in sup-
ply at a ceratin DP is replenished from the depot. The net
flow of these shipments determine the inventory Y in the
depot, which operates also as a clearing house for the DPs.

Recall that there are no shipment costs. The initial alloca-
tion to the DPs xi , i = 1, . . . , n, must satisfy the demands
in day 1 with probability not smaller that Q1 – see con-
straints (9)–(11) below. For each realized scenario in day
1, including a scenario s ′ for which ds ′

i > xi for some i (in
which case the safety stock in DPi is used), if such exists,
we require that (a) all on-board safety stocks are replen-
ished to their full initial capacity, and (b) the demands in
day 2 are satisfied with probability not smaller than Q2.
These requirements are manifested in constraints (12)–(14)
below. The two-stage optimization model is formulated as
follows:

min CXX + CY Y (8)

s.t .

xi − ds
i δs ≥ 0, i = 1, . . . , n, s ∈ S1, (9)

X −
n∑

i=1

xi ≥ 0, (10)

∑
s∈S1

psδs ≥ Q1, (11)

ys
i − (

ds
i + dt

i − xi

) + M(1 − δst ) ≥ 0,

i = 1, . . . , n, s ∈ S1, t ∈ S2, (12)

Y −
n∑

i=1

ys
i ≥ 0, s ∈ S1, (13)

∑
t∈S2

pst δst ≥ Q2, s ∈ S1, (14)

xi , Y ≥ 0, xi , y
s
i ∈ Z, δs , δst ∈ {0, 1},

i = 1, . . . , n, s ∈ S1, t ∈ S2. (15)

The binary variables δs , s ∈ S1, and δst , s ∈ S1, t ∈ S2

indicate whether a certain scenario has been selected to be
satisfied in day 1, and in day 2 given a scenario in day 1,
respectively. Recall that the requirements in day 2 must be sat-
isfied with respect to each possible realization of the demand
scenario in day 1. The variables ys

i , i = 1, . . . , n, are the
recourse variables: the flow of supply to (or from) DPi , given
that scenario s has been realized in day 1. Recall that the
value of some ys

i may be negative, in which case supply is
actually taken away from DPi . The constraints in (12) deter-
mine the demand scenarios in day 2 to be satisfied, where
M is a large constant compared to the demand data. That
is, if δst = 1 then the demand of scenario t is to be sat-
isfied for each DPi , given scenario s occurred on the first
day. Since inventories cannot be negative, we require that
xi ≥ 0, i = 1, . . . , n, Y ≥ 0. The following example
demonstrates this model.

Naval Research Logistics DOI 10.1002/nav



Kress, Penn, and Polukarov: Minmax Multidimensional Knapsack Problem 663

Table 5. Scenarios in day 1.

Scenario DP1 DP2 DP3 Pr.

1 10 20 30 0.3
2 30 60 20 0.4
3 20 50 10 0.3

EXAMPLE: There are n = 3 DPs, and on each day
of the two-days operation there are three possible demand
scenarios, as shown in Tables 5–7.

The probabilities of the scenarios in day 1 are given in
Table 5, and the conditional transition probabilities from
scenarios in day 1 to scenarios in day 2 are presented in
Table 7. The demand scenarios of day 1 and day 2 are given
in Tables 5 and 6, respectively. The costs of a unit supply are
CX = 5 and CY = 6 for a DP and the depot, respectively.
The required minimum probability thresholds are Q1 = 1
and Q2 = 0.7, for day 1 and day 2, respectively. An opti-
mal deployment (there may be multiple optima) is x1 = 50,
x2 = 80, x3 = 60 with X = ∑3

i=1 xi = 190, and Y = 0. If
scenario 1 is realized in day 1, then all three scenarios can be
satisfied in day 2 (with probability 1); if scenario 2 is real-
ized in day 1, then scenarios 2 and 3 are satisfied in day 2
(with probability 0.4 + 0.3 = 0.7 as required); if scenario 3
is realized in day 1, then once again all three scenarios can
be satisfied in day 2 (with probability 1). The values of the
recourse variables if scenario 1 is realized are: y1

1 = −10,
y1

2 = −50 and y1
3 = 20, which means that some of the

excess supplies in DPi , i = 1, 2 is distributed to DP3. Sim-
ilarly, y2

1 = 0, y2
2 = −10, y2

3 = 10, and y3
1 = 0, y3

2 = −20,
y3

3 = 0. Notice that the depot is initially empty (Y = 0).
This comes with no surprise because it is cheaper to store
supplies in the DPs than in the depot (CX < CY ). Absent
transportation costs in the second period, it would always
be better to allocate all the needed supplies to the DPs. If
the costs are reversed, that is, CX = 6 and CY = 5, then
an optimal solution is x1 = 30, x2 = 60, x3 = 30 with
X = ∑3

i=1 xi = 120, and Y = 70. It is shown below that the
problem can be decomposed into a series of MKPs and that
the optimal deployment is independent of the actual values
of the costs and depends only on the ordinal relation between
CX and CY .

Next we show that the two-period problems (8)–(15) can
be decomposed into two separate problems, each is an MKP.

Table 6. Scenarios in day 2.

Scenario DP1 DP2 DP3

1 30 10 10
2 20 10 50
3 10 10 20

Table 7. Conditional transition probabilities.

Scenarios in day 1 1 2 3
Scenarios in day 2

1 0.7 0.3 0.2
2 0.2 0.4 0.7
3 0.1 0.3 0.1

The period 1 problem, which is labeled �1 and is equivalent
to (4)–(7), is

min X

s.t .

xi − ds
i δs ≥ 0, i = 1, . . . , n, s ∈ S1,

X −
n∑

i=1

xi ≥ 0,

∑
s∈S1

psδs ≥ Q1,

xi ≥ 0, xi ∈ Z, δs ∈ {0, 1}, i = 1, . . . , n, s ∈ S1.

Note that since ds
i ≥ 0 for all i and s ∈ S1, the non-

negativity requirements on the xi variables are redundant.
For any given feasible solution x = (x1, . . . , xn) of �1, the
period 2 problem, �2(x), is,

min y(x)

s.t .

ys
i (x) + M(1 − δst ) ≥ (

ds
i + dt

i − xi

)
,

i = 1, . . . , n, s ∈ S1, t ∈ S2,

y(x) −
n∑

i=1

ys
i (x) ≥ 0, s ∈ S1,

∑
t∈S2

pst δst ≥ Q2, s ∈ S1,

ys
i (x) ∈ Z, δst ∈ {0, 1}, i = 1, . . . , n, s ∈ S1, t ∈ S2.

Note that y(x) represents the total sum of shipments to and
from the depot and can be negative.

Theorem 5.1 below shows that an optimal solution of the
two-period problems (8)–(15) is obtained by solving �1 and
�2(x) sequentially. Recall that the optimal deployment is
independent of the actual values of CX and CY . Moreover, the
optimal total amount of supply (X+Y ) is constant for a partic-
ular problem instance and is independent of the costs CX and
CY . This property suggests the model is robust in the sense
that it exempts military planners from specifying exact cost
values which are difficult to estimate. They need to express
just ordinal preferences between two logistic options. Also,
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Proposition 5.2 below indicates that the integrality constraints
on the x and the y variables in these problems are redundant
if the demand values d are integer. We leave the proofs of
these results to the Appendix.

THEOREM 5.1: Let x̂ be an optimal solution for �1 and
ŷ(x̂) be the corresponding optimal objective value of �2(x̂),
and let X̂ = ∑n

i=1 x̂i and Ŷ (x̂) = max{0, ŷ(x̂)}. Then,

(i) if CX ≥ CY then (X̂, Ŷ (x̂)) is optimal for (8)–(15);
(ii) if CX < CY then (X̂ + Ŷ (x̂), 0) is optimal for

(8)–(15).

For each of the problems �1 and �2(x) denote by MIP-�1

and MIP-�2(x), respectively, the former problems where the
integrality requirements are not imposed on the x and the y

variables.

PROPOSITION 5.2: Let ds and dt be integral demand vec-
tors for each s ∈ S1 and t ∈ S2, respectively. Then, there
always exist optimal solutions of MIP-�1 and of MIP-�2(x)

which are integral.

We have already argued in Section 3 that �1 is essentially
an MKP. We wish to show now that a solution for �2(x) is
obtained by solving |S1| MKPs. For a given period 1 solution
x and a given period 1 scenario s ∈ S1, consider problem
�s

2(x) below:

min
n∑

i=1

ys
i (x)

s.t .

ys
i (x) + M(1 − δst ) ≥ (

ds
i + dt

i − xi

)
, i = 1, . . . , n, t ∈ S2,∑

t∈S2

pst δst ≥ Q2,

ys
i (x) ∈ Z, δst ∈ {0, 1}, i = 1, . . . , n, t ∈ S2.

Clearly, each one of the |S1| problems �s
2(x) is an MKP.

PROPOSITION 5.3: For a given period 1 solution x, let
ŷs(x) = (ŷs

1(x), . . . , ŷs
n(x)) be an optimal solution of �s

2(x),
s ∈ S1, and let ŝ ∈ arg max{∑n

i=1 ŷs
i (x) : s ∈ S1}. Then,

ŷ(x), an optimal solution of �2(x) is obtained by,

ŷ(x) =
n∑

i=1

ŷ ŝ
i (x).

PROOF: The objective in problem �2(x) is to select the
minimum y(x) value that satisfies the probability threshold
requirement (14) for all period 1 scenarios s ∈ S1. This

minimum is attained if for each problem �s
2(x), s ∈ S1,∑n

i=1 ys
i (x) is minimized. ŷ(x) is the maximum among these

values. �

6. SUMMARY AND CONCLUSIONS

In this paper we present a new knapsack-related combina-
torial problem termed minmax multidimensional knapsack
problem (MKP) that is motivated by a military logistics
problem. The logistics problem is to determine an optimal
deployment of inventories that satisfies certain operational
requirements in a two-days scenario. Recourse opportunities,
which are crucial in combat related military environments,
are explicitly incorporated in our model. We show that the
resulting two-period stochastic-programming problem can be
solved by solving a series of MKPs. A practically efficient
algorithm is developed for solving the MKP.

The above result can be generalized to the multi-period
problem with recourse. The multi-period problem can be
decomposed into T separate problems, �1, �2, . . . , �T , that
correspond to periods 1, 2, . . . , T , respectively. We observe
that to solve the multi-period problem we need to opti-
mize only the first and the last periods’ allocations. For all
intermediate periods we need to find just feasible solutions
that satisfy the corresponding responsiveness chance con-
straints. This observation follows from the replenishment
policy, where all tapped safety stocks are replenished in
the subsequent periods, and the assumption regarding free
transshipment.

Possible extensions of the logistics model involve addi-
tional constraints such as zero safety stock, which excludes
back-orders, and no transshipment, which implies that the
recourse variables must be non-negative. Another possible
extension may be to incorporate possible (stochastic) inter-
diction on the transportation of supplies from depot and
among the DPs. These extensions may generate extensions
to the MKP where side constraints are incorporated in the
knapsack-like setting.

APPENDIX

We prove now Theorem 5.1 and Proposition 5.2. First we show that the
resulting sequential optimal solutions for �1 and �2 provide an optimal solu-
tion for the combined problem. To prove this result we need the following
lemma.

LEMMA A1: Let x′ and x′′ be two feasible solutions for �1 such that
x′′

i = x′
i + αi , αi ∈ R, i = 1, . . . , n. Let ŷ(x′) and ŷ(x′′) be the cor-

responding optimal objective values of �2(x
′) and �2(x

′′), respectively.
Then, ŷ(x′′) = ŷ(x′) − ∑n

i=1 αi .

PROOF: We start by showing that ŷ(x′′) ≥ ŷ(x′)−∑n
i=1 αi . Let x be any

feasible solution of �1 and let a
s,t
i (x) = ds

i + dt
i − xi for any i = 1, . . . , n,
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s ∈ S1, t ∈ S2. Then, for each s ∈ S1 we define

As(x) = {
as,t (x) = (

a
s,t
i (x)

)n

i=1 : t ∈ S2}.

Let âs (x) be an optimal solution to the MKP on As(x) and observe that
ŷ(x) = max{âs (x) : s ∈ S1}. Then it suffices to show that for each
s ∈ S1, the inequality âs (x′′) ≥ âs (x′) − ∑n

i=1 αi holds. This is because
ŷ(x′′) ≥ âs (x′′) ≥ âs (x′) − ∑n

i=1 αi for each s ∈ S1 and ŷ(x′) =
max{âs (x′) : s ∈ S1}. Let s be any scenario in S1. Assume on the contrary
that âs (x′′) < âs(x′) − ∑n

i=1 αi , then
∑n

i=1(â
s
i (x

′′) + αi) <
∑n

i=1 âs
i (x

′).
We show below that âs (x′′) + α, where α = (αi)

n
i=1, is a feasible solution

for the MKP on As(x′), contradicting the optimality of âs (x′).
Let âs (x′′) be an optimal solution, and hence a feasible solution, for the

MKP on As(x′′). Therefore, there exists a feasible subset W ⊆ S2 such that
for each t ∈ W and for each i, the inequality âs

i (x
′′) ≥ a

s,t
i (x′′) holds. Also,

for each t ∈ W and for each i, by the definition of a
s,t
i (x) and of x′′ the

equality a
s,t
i (x′′) = a

s,t
i (x′) − αi holds. Hence, for each t ∈ W and each i,

âs
i (x

′′) ≥ a
s,t
i (x′′) = a

s,t
i (x′) − αi , implying âs

i (x
′′) + αi ≥ a

s,t
i (x′). Thus,

âs (x′′)+α is a feasible solution for the MKP on the set As(x′), of value less
than âs (x′), contradicting the optimality of âs (x′).

Showing the other direction that ŷ(x′′) ≤ ŷ(x′) − ∑n
i=1 αi can be done

in the same way by showing that ŷ(x′) ≥ ŷ(x′′)−∑n
i=1(−αi). Thus, by the

two directions we get that ŷ(x′′) = ŷ(x′) − ∑n
i=1 αi as required. �

The next theorem states that the sequential procedure for obtaining the
logistics deployments in periods 1 and 2 is globally optimal.

THEOREM 5.1: Let x̂ be an optimal solution for �1 and ŷ(x̂) be the
corresponding optimal objective value of �2(x̂), and let X̂ = ∑n

i=1 x̂i and
Ŷ (x̂) = max{0, ŷ(x̂)}. Then,

(i) if CX ≥ CY then (X̂, Ŷ (x̂)) is optimal for (8)–(15);
(ii) if CX < CY then (X̂ + Ŷ (x̂), 0) is optimal for (8)–(15).

PROOF: (i) To show the correctness of the theorem in the case of
CX ≥ CY it suffices to show that for any feasible solution x of �1 such that
X = X̂ + ∑n

i=1 αi with
∑n

i=1 αi ≥ 0, where X = ∑n
i=1 xi , the inequality

CXX + CY Ŷ (x) ≥ CXX̂ + CY Ŷ (x̂) holds.
Suppose Ŷ (x) = 0, which yields ŷ(x) ≤ 0. If Ŷ (x̂) = 0 then the above

inequality follows from the fact that X ≥ X̂. Otherwise, Ŷ (x̂) > 0, implies
ŷ(x̂) > 0. By Lemma A1, ŷ(x̂) − ∑n

i=1 αi = ŷ(x) ≤ 0, which implies∑n
i=1 αi ≥ ŷ(x̂) = Ŷ (x̂). Then,

CXX + CY Ŷ (x) = CXX̂ + CX

n∑
i=1

αi + CY · 0

≥ CXX̂ + CXŶ (x̂) ≥ CXX̂ + CY Ŷ (x̂).

Suppose now Ŷ (x) > 0, which implies that Ŷ (x) = ŷ(x) > 0. By Lemma
A1, since X ≥ X̂, we get Ŷ (x) = Ŷ (x̂) − ∑n

i=1 αi . Then,

CXX + CY Ŷ (x) = CXX̂ + CX

n∑
i=1

αi + CY Ŷ (x̂) − CY

n∑
i=1

αi

= CXX̂ + CY Ŷ (x̂) + (CX − CY )

n∑
i=1

αi ≥ CXX̂ + CY Ŷ (x̂).

(ii) In the case of CX < CY we only need to show that CXX +CY Ŷ (x) ≥
CX(X + Ŷ (x)) for any feasible solution x of �1. The above follows directly
from CX ≤ CY . �

We next turn to show that the integrality requirements on the x and the
ys variables in our IP formulations are redundant. For each of the problems
�1 and �2(x) denote by MIP-�1 and MIP-�2(x), respectively, the former
problems where the integrality requirements are not imposed on the x and
the ys variables.

PROPOSITION 5.2: Let ds and dt be integral demand vectors for each
s ∈ S1 and t ∈ S2. Then, there always exist optimal solutions of MIP-�1

and of MIP-�2(x) which are integral.

PROOF: The proposition follows immediately from the fact that the δs ,
δt variables are {0, 1}-variables and the integrality of the demand vectors.
Observe that in problem MIP-�1 we seek for a subset of scenarios (this is
since δs is a binary variable) for which the required integral demands will be
satisfied. The above coupled with the minimality of X imply the integrality
of the x’s. Similarly, it can be shown that MIP-�2(x) is integral for any
integral vector x and integral demand vector. �
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